State Aggregations in Markov Chains and Block Models of Networks

نویسندگان

چکیده

We consider state-aggregation schemes for Markov chains from an information-theoretic perspective. Specifically, we aggregating the states of a chain such that mutual information aggregated separated by $T$ time steps is maximized. show $T=1$ this recovers maximum-likelihood estimator degree-corrected stochastic block model as particular case, which enables us to explain certain features likelihood landscape generative network dynamical lens. further highlight how can uncover coherent, long-range modules considering timescale $T\ensuremath{\gg}1$ essential. demonstrate our results using synthetic flows and real-world ocean currents, where are able recover fundamental surface currents oceans.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Markov chains on orthogonal block structures

In this paper we define a particular Markov chain on some combinatorial structures called orthogonal block structures. These structures include, as a particular case, the poset block structures, which can be naturally regarded as the set on which the generalized wreath product of permutation groups acts as the group of automorphisms. In this case, we study the associated Gelfand pairs together ...

متن کامل

Modeling haplotype block variation using Markov chains.

Models of background variation in genomic regions form the basis of linkage disequilibrium mapping methods. In this work we analyze a background model that groups SNPs into haplotype blocks and represents the dependencies between blocks by a Markov chain. We develop an error measure to compare the performance of this model against the common model that assumes that blocks are independent. By ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2021

ISSN: ['1079-7114', '0031-9007', '1092-0145']

DOI: https://doi.org/10.1103/physrevlett.127.078301